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MsTGANet: Automatic Drusen Segmentation
From Retinal OCT Images
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Yuanyuan Peng , Zhongyue Chen, and Xinjian Chen , Senior Member, IEEE

Abstract— Drusen is considered as the landmark
for diagnosis of AMD and important risk factor for the
development of AMD. Therefore, accurate segmentation of
drusen in retinal OCT images is crucial for early diagnosis of
AMD. However, drusen segmentation in retinal OCT images
is still very challenging due to the large variations in size
and shape of drusen, blurred boundaries, and speckle noise
interference. Moreover, the lack of OCT dataset with pixel-
level annotation is also a vital factor hindering the improve-
ment of drusen segmentation accuracy. To solve these
problems, a novel multi-scale transformer global attention
network (MsTGANet) is proposed for drusen segmentation
in retinal OCT images. In MsTGANet, which is based on
U-Shape architecture, a novel multi-scale transformer non-
local (MsTNL) module is designed and inserted into the top
of encoder path, aiming at capturing multi-scale non-local
features with long-range dependencies from different
layers of encoder. Meanwhile, a novel multi-semantic
global channel and spatial joint attention module (MsGCS)
between encoder and decoder is proposed to guide the
model to fuse different semantic features, thereby improving
the model’s ability to learn multi-semantic global contextual
information. Furthermore, to alleviate the shortage of
labeled data, we propose a novel semi-supervisedversion of
MsTGANet (Semi-MsTGANet) based on pseudo-labeleddata
augmentation strategy, which can leverage a large amount
of unlabeled data to further improve the segmentation
performance. Finally, comprehensive experiments are
conducted to evaluate the performance of the proposed
MsTGANet and Semi-MsTGANet. The experimental
results show that our proposed methods achieve better
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segmentation accuracy than other state-of-the-art CNN-
based methods.

Index Terms— Optical coherence tomography, drusen,
transformer, segmentation.

I. INTRODUCTION

OPTICAL coherence tomography(OCT) is a non-invasive
imaging technology used to visualize the cross-sectional

retinal structure [1]–[3]. Many retinal diseases can be observed
in OCT images clearly, such as macular hole [4], [5], choroidal
neovascularization (CNV) [6], [8], pigment epithelial detach-
ment (PED) [9], [10], optic disc edema [11], and central
serous retinopathy [12], [13], etc. Therefore, OCT plays an
important role in the diagnosis and monitoring of retinal
diseases [14]–[18].

Age-related macular degeneration (AMD) is an irreversible
and progressive chronic retinal disease, which is one of the
main causes of vision loss worldwide [19]. Drusen, a local
deposit of extracellular debris between the retinal pigment
epithelium (RPE) and Bruch’s membrane (BM), is considered
as a key clinical sign and important risk factor for the develop-
ment of AMD [20]. The follow-up assessment of drusen helps
to understand the progress of AMD and the effectiveness of
treatment [21]. Therefore, accurate segmentation of the drusen
in retinal OCT images is crucial for early diagnosis of AMD.

Many previous studies focused on the detection and seg-
mentation of drusen in fundus images, and have achieved
good results [21]–[23]. Mittal and Kumari [21]. proposed
an automated method for drusen detection based on three
stages including bright region enhancement, drusen regions
detection by suppressing spurious regions and edge linking.
Akram et al. [22]. adopted support vector machine (SVM)
based on manually designed drusen features for drusen seg-
mentation. To tackle the limitation of the manually selected
features, Ren et al. [23]. adopted the VGG network as the
backbone to extract rich features in fundus color images and
developed a novel deep learning based method for drusen
segmentation. Pham et al. [24]. exploited both local and global
information to improve the drusen segmentation performance
in fundus color photography. Yan et al. [25]. presented a deep
random walk technique for drusen segmentation from fundus
images, which is mainly composed of three parts: a deep
feature extraction module to learn both semantic-level and low-
level representations of image, an affinity learning module to
get pixel-pixel affinities for formulating the transition matrix
of random walk and a random walk module which propagates
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Fig. 1. Samples of drusen in OCT images. The red arrows indicate the
drusens.

manual labels. By combining generalized low rank approx-
imation of matrices with supervised manifold regularization
to learn new features from image patches sampled from
retinal images, Ren et al. [26]. proposed a supervised feature
learning method for drusen segmentation in fundus images.
Although these methods have achieved good performance for
drusen segmentation in fundus images, the further accurate
assessment of drusen based on fundus images still faces great
challenges as the interference of other retinal diseases with
similar pathological features, such as hard exudation [24], and
the fundus image only captures the projection area informa-
tion of drusen, lacking depth and spatial information [27].
Optical coherence tomography (OCT) can provide clear cross-
sectional imaging of the retinal structure and has the ability
to quantitatively evaluate retinal changes [28], [29]. Therefore,
it has also become a promising tool for evaluating drusen [20].
Chen et al. [20]. exploited an automated drusen segmentation
method in SD-OCT images by leveraging a priori knowledge
of normal retinal morphology and anatomical features. And
then, they further proposed a novel false color fusion strategy
for drusen and geographic atrophy (GA) visualization in OCT
images [27]. In addition, two previous CNN-based works
for drusen segmentation in OCT images were proposed by
Asgari et al. [30], [31]. Although these works have achieved
promising performance in the task of evaluating drusen,
the drusen segmentation in retinal OCT images is still very
challenging due to the variations in size and shape of drusen,
blurred boundaries, background noise interference and low
contrast of OCT imaging. Fig.1 shows samples of drusen
in retinal OCT images. Moreover, the lack of OCT dataset
with pixel-level annotation is also a vital factor hindering the
exploration of CNN-based methods for drusen segmentation.

To tackle these problems and improve the drusen segmen-
tation accuracy, we propose a novel multi-scale transformer

global attention network (MsTGANet), which integrates our
newly proposed multi-scale transformer non-local module
(MsTNL) and multi-semantic global channel and spatial joint
attention module (MsGCS). Our main contributions are sum-
marized as follows:

1) A novel MsTNL module is proposed and embedded
into the top of encoder path to capture multi-scale non-local
features with long-range dependencies from different layers in
encoder.

2) To improve the model’s ability to learn multi-semantic
global contextual features, a novel MsGCS module is proposed
and inserted between encoder and decoder.

3) By combining MsTNL and MsGCS module, a novel
network named as MsTGANet is designed based on U-Shape
architecture and applied to the task of drusen segmentation in
OCT images.

4) We further propose a novel semi-supervised version of
MsTGANet (Semi-MsTGANet) based on pseudo-labeled data
augmentation strategy, which can leverage a large amount
of unlabeled data to further improve the segmentation accu-
racy. And we also conduct extensive experiments to evaluate
the effectiveness of the proposed MsTGANet and Semi-
MsTGANet. The experimental results show that, compared
with other state-of-the-art CNN-based methods, the seg-
mentation accuracy of the proposed MsTGANet and Semi-
MsTGANet are both improved significantly.

II. RELATED WORKS

A. Convolutional Neural Network

Recently, many segmentation networks based on fully con-
volutional network (FCN) [32] were proposed for semantic
segmentation tasks [33]–[35]. Among them, U-Net with the
encoder-decoder architecture has achieved remarkable per-
formance in biomedical image segmentation [33]. In U-Net,
the encoder to capture different level semantic features grad-
ually by stacking convolutional layers and down-sampling
operations, while a decoder with up-sampling layers is
designed to recover the spatial information from the output
of encoder stage by stage. Besides, to further improve the
performance, skip connection is also added at each layer
between the encoder and corresponding decoder to compensate
the fine information loss caused by down-sampling. Although
U-Net has achieved excellent performance in biomedical
image segmentation, the simple skip-connection in original
U-Net ignores global information and may introduce inter-
ference from local unrelated features, which causes U-Net
to perform poor in some segmentation tasks with complex
features. Recently, many promising studies have been pro-
posed to try to solve these problems. Wu et al. [34]. proposed
FastFCN by introducing a joint pyramid up-sampling module
to replace dilated convolutions and capture global context
information. Oktay et al. [35]. adopted a novel attention gate
(AG) module to highlight salient features from skip connection
in Attention U-Net. In addition, there are also methods aiming
to improve the model’s performance by exploring and inte-
grating multi-scale contextual information in network design.
PsPNet [36] was proposed to improve the model’s ability of
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the multi-scale features capture in high-level feature maps by
introducing multiple parallel pooling operations with different
kernel sizes. DeepLabV3 [37] adopted multiple convolution
branches with different receptive fields to improve the model’s
capacity to obtain multi-scale information. Based on both
above advantages, Gu et al. [38]. proposed CE-Net by inte-
grating two newly proposed dense atrous convolution (DAC)
block and residual multi-kernel pooling (RMP) block, which
has achieved promising performance in 2D medical image
segmentation tasks. In recent years, many excellent methods
based on attention mechanism also have been proposed for
improving segmentation performance. Fu et al. [39]. proposed
a dual attention network (DANet) to adaptively integrate local
features and global dependencies. In our previous works,
we proposed CPFNet [40] by designing two pyramidal mod-
ules to fuse global/multi-scale context information, which has
also obtained very competitive performance in many medical
image segmentation tasks. CPFNet [40] explores global/multi-
scale contextual information mainly based on the soft spatial
attention mechanism, which adopts the dilated convolution
with shared weights to learn the feature information under dif-
ferent receptive fields and fuse multi-scale context information
to improve the learning ability of global features. However,
such multi-scale global feature extraction method still learns
features in multi-size receptive fields, which cannot capture
the long-distance feature correlation in the entire feature map.

B. Transformer

The transformer was originally proposed by
Vaswani et al. [41]. to obtain the long-term dependence
of timing signals in natural language processing (NLP)
tasks. And many variant models based on transformer
have achieved excellent results in machine translation and
NLP [42]–[44]. Recently, many studies attempted to apply
the transformer method in the field of computer vision to
strengthen the network’s ability of long-range dependencies
capture in feature maps [45]–[48]. Wang et al. [47]. proposed
a non-local network by appending the self-attention module
based on transformer style on the top of backbone network
to capture the non-local features with strong semantic
information. Zhang et al. [48]. proposed a novel local
relation network (LRNet) to provide greater modeling
capacity than regular convolution in a more efficient manner.
In addition, Dosovitskiy et al. [49]. proposed a novel ViT
network, which can obtain results comparable to the current
optimal convolutional network, with the great reduction
of the computational resources required for its training.
Srinivas et al. [50]. developed a novel method for visual
recognition by combining regular CNN with transformer and
achieved better performance than pure CNN based method,
such as ResNet [51] and EfficientNet [52].

Although these transformer and CNN-based methods have
achieved promising performance in many image processing
tasks, there are still two problems that need to be resolved
when these methods are applied to drusen segmentation in
retinal OCT images: 1) How to improve the network’s abil-
ity to capture multi-scale non-local features so as to deal

with the complicated pathological manifestations of drusen in
OCT images, especially in terms of size and shape. 2) How to
improve the network’s ability to learn multi-semantic global
contextual features while suppressing noise interference, so as
to solve the low contrast of OCT image imaging and the noise
interference introduced by inherent technology. Therefore,
to solve these problems and improve the accuracy of drusen
segmentation, we propose a novel MsTGANet by combining
two newly proposed modules of MsTNL and MsGCS. The
MsTNL module can guide the model to capture multi-scale
non-local features with long-term dependency information
from different layers of the encoder. Furthermore, the MsGCS
module between encoder and decoder can guide the model to
extract multi-semantic global features, improving the model’s
capacity to learn salient features while suppressing the inter-
ference of non-related local features. By test, our proposed
MsTGANet achieves higher accuracy for drusen segmentation
in OCT images.

III. METHODS

In this section, we first provide the structure details and core
components of the proposed MsTGANet. Then, we present
the loss function for optimizing the model. Finally, we intro-
duce the semi-supervised version of MsTGANet based on
pseudo-labeled data augmentation strategy, named as Semi-
MsTGANet, which can further improve the segmentation
accuracy of drusen in retinal OCT images by using a large
amount of unlabeled data.

A. MsTGANet

1) Overview: Fig.2 shows the proposed MsTGANet, which
adopts the encoder-decoder architecture as the basic frame-
work and mainly consists four parts including encoder path,
MsTNL module, MsGCS module and decoder path. It can be
seen from Fig.2 that the MsTNL is inserted into the top of
encoder path, in which the feature maps with different scale
information from different layers of encoder are employed
as MsTNL’s input to capture multi-scale non-local features
with long-range dependency. The MsGCS module is adopted
to replace the skip-connection between encoder and decoder,
which aims to guide the model to fuse multi-semantic global
contextual features, so as to improve the model’s ability to
learn global salient features while suppressing the interference
of non-related local features.

2) Encoder: It can be seen from Fig. 2 that, same as the
U-Net[28], the encoder of proposed MsTGANet mainly con-
tains five blocks, where each block consists of a MaxPool
operation followed by two convolutional layers except for the
first block with only two convolutional layers. The MaxPool
operation is adopted to down-sample the feature maps and
extend the receptive fields, while the convolutional layers are
employed to extract the features in different stages.

3) MsTNL Module: As shown in Fig. 1, the complicated
pathological manifestations of drusen in OCT images, espe-
cially in terms of size and shape, poses a great challenge
to accurately segment drusen regions. Besides, there are also
other interferences surrounding drusen, such as other lesions
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Fig. 2. The architecture of MsTGANet.

and speckle noise. Therefore, improving the network’s abil-
ity to learn multi-scale non-local features is essential for
improving the accuracy of drusen segmentation. Many pre-
vious studies have explored the non-local features to improve
the performance of image analysis tasks and have achieved
excellent results [53], [54]. However, these non-local spatial
interaction approaches are not cross-scale and have no location
information. To this end, inspired by attention-based methods
of [40] and [54], a novel multi-scale transformer non-local
module (MsTNL) is proposed and appended on the top layer
of encoder path to capture multi-scale non-local information
with long-range dependency from different layers of encoder.
Fig. 3 illustrates the details of MsTNL. As seen from Fig.3, our
proposed MsTNL mainly consists of two blocks: multi-head
self-attention encoder and multi-head self-attention decoder.

a) Multi-head self-attention encoder: As shown in Fig. 2
and Fig. 3, feature maps from stage1 (F1), stage2 (F2),
stage3 (F3), stage4 (F4) and top layer (FT ) are adopted
as the input of MsTNL. First, the feature maps of F1, F2,
F3, and F4 are fed into a block of down-sampling followed
by a conv3 × 3 operation, respectively, to obtain the feature
maps that match FT ’s size and channel numbers. And then,
these down-sampled features are fused by the element-level
addition to get the feature maps with multi-scale informa-
tion F A. To obtain the multi-scale non-local features with
long dependency information, the multi-scale feature map F A
and the top layer’s feature map FT are fed into a multi-head
self-attention module, which mainly contains three branches:
Query, Key and Value [44]. Different from self-attention non-
local module in previous studies[44], the multi-head self-
attention module adopts the multi-scale features F A as the
input of Query branch, while the branches of Key and Value

employs the feature maps FT with strong semantic global
information as the input. The multi-head self-attention encoder
module is mainly adopted to extract the multi-scale non-local
features with long dependency in F A based on the guidance of
the feature maps FT with strong semantic global information.
It can be seen from Fig.3 (a) that the proposed multi-scale
self-attention module mainly consists of five steps:

(1) The convolution operations with 1 × 1 kernel size are
adopted as the weights of branch Query, Key and Value to
encode the feature maps F A to Q and FT to K and V ,
respectively. And, the channel of Q and K also be squeezed
to 1/8C to squeeze the channel features and improve the
efficiency of the network.

Q = Conv1 × 1 (FA) ∈ RB,C/8,H,W (1)

K = Conv1 × 1 (FT ) ∈ RB,C/8,H,W (2)

V = Conv1 × 1 (FT ) ∈ RB,C,H,W (3)

where B , C , H and W represent the batch size, channel, height
and width, respectively.

(2) To make the self-attention operation sensitive to position
for features, position coding has been used in the model design
based on the transformer architecture [41], which allows
the network to focus on the long-term dependence on the
feature position. Therefore, in this paper, we adopt learnable
parameters to encode the feature position from the vertical and
horizontal directions, respectively.

P E = Reshape (rh) + Reshape (rw) ∈ RB,C/8,H,W (4)

where rh ∈ RB,C/8,H ,1 and rw ∈ RB,C/8,1,W represent the
encoding learnable vectors from the vertical and horizontal
directions, respectively.
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Fig. 3. Details of MsTNL. (a) Multi-head self-attention encoder (b) Multi-head self-attention decoder.

(3) Obtaining the attention map: The similarity matrix E
between Q and K is calculated first to obtain the multi-
scale non-local spatial correlation weight with the guidance
of strong global semantic information. Then, the positional
correlation from vertical and horizontal directions of the fea-
tures in Q, named as E P , is encoded by matrix multiplication
between P E and Q. Finally, the attention map At t is obtained
by adding E and E P followed by Softmax.

Q = Reshape (Q) ∈ RB,C/8,H×W (5)
K = Reshape (K ) ∈ RB,C/8,H×W (6)
E = QT ◦ K ∈ RB,H×W,H×W (7)

E P = QT ◦ P E ∈ RB,H×W,H×W (8)
Att = Soft max (E + E P) ∈ RB,H×W,H×W (9)

where QT is the transpose of Q, and ◦ is matrix multiplication
operation.

(4) The attention map At t and the corresponding V are
weighted and summed to obtain the multi-scale non-local
spatial response FM with strong global semantics.

FM = Reshape
(

V ◦ AttT
)

∈ RB,C,W,H (10)

(5) Finally, the multi-scale non-local feature map F En
with long dependency is obtained by element-level addition
between the FT and the weighted FM as follows:

FEn = FT + γ FM ∈ RB,C,W,H (11)

where γ is a learnable parameter that is initialized as 0, and
gradually adjusted to assign the weight for F M in a learnable
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Fig. 4. The structure of multi-semantic global channel and spatial joint attention module (MsGCS).

way in the training process. As shown in Eq. 11, F En is
the weighted sum of multi-scale non-local features and strong
global semantic features.

b) Multi-head self-attention decoder: Contrary to multi-head
self-attention encoder, the multi-head self-attention decoder is
mainly used to further extract the strong semantic position
self-correlation information contained in the top-level feature
map FT based on the guidance of multi-scale non-local
features F En. Similar to multi-head self-attention encoder,
the proposed multi-head self-attention decoder also mainly
consists of five steps, as shown in Fig.3 (b):

(1) The convolution operations with 1 × 1 kernel size are
adopted as the weights of branch Query, Key and Value to
encode the feature maps FT to Q D and F En to K D and
V D, respectively.

QD = Conv1 × 1 (FT ) ∈ RB,C/8,H,W (12)

K D = Conv1 × 1 (FEn) ∈ RB,C/8,H,W (13)

VD = Conv1 × 1 (FEn) ∈ RB,C,H,W (14)

(2) Position encoding for Q D , which aims to encode the
strong semantic feature position in Q D from the vertical and
horizontal directions, respectively.

P ED = Reshape (rhd ) + Reshape (rwd ) ∈ RB,C/8,H,W (15)

where rhd ∈ RB,C/8,H ,1 and rwd ∈ RB,C/8,1,W represent the
encoding learnable vectors from the vertical and horizontal
directions, respectively.

(3) Obtaining the attention map: Like multi-head self-
attention encoder, it also takes 5 steps to obtain the attention
map, as follows:

QD = Reshape (QD) ∈ RB,C/8,W×H (16)

K D = Reshape (K D) ∈ RB,C/8,W×H (17)

ED = QT
D ◦ K D ∈ RB,W×H,W×H (18)

E PD = QT
D ◦ P ED ∈ RB,H×W,H×W (19)

AttD = Soft max (ED + E PD) ∈ RB,H×W,H×W (20)

(4) The attention map At t and the corresponding V D are
weighted and summed to obtain the spatial response FM D
with strong semantic positional long dependency information.

FM D = Reshape
(

VD ◦ AttT
D

)
∈ RB,C,W,H (21)

(5) Finally, the final multi-scale strong semantic non-local
feature map F Final with long dependency is obtained by
element-level addition between FT and the weighted FM D,
as follows:

FFinal = FT + γD FM D ∈ RB,C,W,H (22)

where γD is a learnable parameter that is initialized as 0, and
gradually adjusted to assign the weight for FM D in a learnable
way during training.

4) MsGCS Module: Although U-Net and its variants have
achieved excellent performance in medical image segmenta-
tion tasks, the simple skip-connection between encoder and
decoder ignores global information and may introduce inter-
ference from local unrelated features [40]. To solve this prob-
lem and further improve the drusen segmentation accuracy,
we propose a novel multi-semantic global channel and spatial
joint attention module(MsGCS) to replace the simple skip-
connection in original U-Net, which aims to guide the model
to learn multi-semantic global contextual features in channel
and spatial dimensions. Fig. 4 shows the detailed structure of
MsGCS module.

As shown in Fig. 4, the skip-connection feature map X with
high resolution weak semantic features and the up-sampled
Xup with low resolution strong semantic features are first
fused by concatenation. And, the fused map is fed into the con-
volution layer for channel normalization to obtain the multi-
semantic global response map X M in channel dimension.

X M = Conv
(
Cat

(
X H , Xup

)) ∈ RB,1,W,H (23)

Then, to further adaptively capture the multi-semantic
global response in spatial dimension, a novel global learnable
weight matrix is developed to multiply with X M followed by
batch normalization (BN) and sigmoid activation. As shown
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in Fig.4, the global learnable heat map FG and multi-semantic
global feature attention map Xat t are obtained as follows:

FG = Reshape (FH ) + Reshape (FV ) ∈ RB,1,W,H (24)

X Att = Sigmoid (BN (FG ∗ X M )) ∈ RB,1,W,H (25)

where F H ∈ RB,1,H ,1 and FV ∈ RB,1,1,W are the spatial
feature positional correlation vectors in the horizontal and
vertical directions, with random initial value following the
standard normal distribution.

Finally, the final feature map X Final is obtained by multi-
plying X H with Xat t :

X Final = X H ∗ X Att ∈ RB,C1,W,H (26)

It can be seen from Eq.26 that X Final is the result of X H
weighted by X at t, which can guide the model to learn multi-
semantic global salient features in the skip-connection feature
map X H while suppressing the interference of non-related
local information, thereby improving the model’s segmentation
performance.

5) Decoder: As shown in Fig.2, the decoder path mainly
contains three components, including up-sampling layer, fea-
ture fusion operation and convolutional blocks that consist of
two convolutional layers. The decoder is mainly adopted to
restore the spatial information with strong multi-scale semantic
features generated by MsTNL, and gradually fuse the multi-
semantic global contextual information from MsGCS module
via two convolutional layers.

B. Loss Function

To optimize the proposed model, a joint loss function L joint

including Dice loss LDice and binary cross entropy loss L BC E

is adopted to guide the training of the model. The joint loss
function is calculated as follows:

L J oint = L Dice + L BC E (27)

L Dice = 1 − 2 |X ∗ Y |
|X | + |Y | (28)

L BC E = −
∑

h,w
(1 − Y ) log (1 − X) + Y log (X) (29)

where X and Y denote the segmentation results and the
corresponding ground truth, h and w represent the coordinates
of the pixel in X and Y . As shown in Eq. 27, the Dice
loss function is mainly used to optimize the model in image
level, while the binary cross entropy loss function is employed
to optimize the model in pixel level. In addition, to ensure
fairness, all the comparison methods involved in this paper
adopts the same loss function to optimize their model during
training.

C. Semi-Supervised MsTGANet Framework

The lack of OCT dataset with pixel-level annotation is
also one of the vital factors hindering the improvement
of drusen segmentation accuracy. It is also very diffi-
cult and time-consuming to obtain these pixel-level annota-
tions. To resolve this issue, we proposed a semi-supervised
MsTGANet framework based on pseudo-labeled data augmen-
tation strategy to further improve the segmentation accuracy

TABLE I
SUPERVISED AND SEMI-SUPERVISED DATA STRATEGIES

of MsTGANet. The overall architecture of the proposed Semi-
MsTGANet is shown in Fig.5. As shown in Fig. 5, the semi-
supervised MsTGANet framework mainly consists of three
steps:

1) The MsTGANet is first trained based on the labeled data
under the guidance of the fully-supervised objective function
(Eq. 27).

2) The above pre-trained MsTGANet is adopted to segment
drusens in large amount of unlabeled data, and the segmenta-
tion results are employed as the pseudo labels corresponding
to the unlabeled data.

3) The large amount of unlabeled data with pseudo label is
mixed with labeled data to retrain MsTGANet based on the
mixed-supervised loss function as follows:

Lmixed = L J oint (X L , YL) + L J oint (XU , YPseudo) (30)

where X L and YL are the original data and the correspond-
ing label, respectively. XU and YPseudo denote the original
unlabled data and the corresponding pseudo label generated
by pre-trained MsTGANet, respectively.

The results and effectiveness of semi-supervised training
strategy will be discussed in Section IV in detail.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Implementation Details

1) Dataset: The 8616 retinal OCT B-scans used in this paper
are collected from the UCSD public dataset [62], which were
established by the Shiley Eye Institute of the University of
California San Diego (UCSD) and all of the images (Spectralis
OCT, Heidelberg Engineering, Germany) were selected from
retrospective cohorts of adult patients without exclusion crite-
ria based on age, gender, or race. Haoyu Chen, ophthalmolo-
gist of the Joint Shantou International Eye Center (JSIEC) of
Shantou University and the Chinese University of Hong Kong,
guided the pixel-level annotation of 972 OCT images in the
UCSD dataset. To comprehensively evaluate the performance
of the proposed MsTGANet and Semi-MsTGANet, 4-fold
cross-validation strategy was applied to 972 labeled images in
all experiments. Meanwhile, the remaining 7644 OCT images
will be employed as unlabeled data to participate the training
of Semi-MsTGANet. The details for data strategies are listed
in TABLE I.

2) Implementation Details: Both proposed MsTGANet and
Semi-MsTGANet were performed on the public platform
pytorch and RTX3090 GPU (24GB). The Adam was used
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Fig. 5. The overall architecture of the proposed semi-supervised version of MsTGANet (Semi-MsTGANet).

as the optimizer. Initial learning rate and weight decay were
set to 0.0005 and 0.0001, respectively. The batch size was
set to 4, and the number of epochs was 100. In addition,
to facilitate training and prevent loss of detailed informa-
tion, the size of images was rescaled to 512 × 512. To
validate the performance of the proposed MsTGANet and
Semi-MsTGANet, we compared their segmentation results
with other excellent networks such as FCN [32], U-Net [33],
FastFCN [34], Attention U-Net(Att-UNet) [35], PsPNet [36],
DeepLabV3 [37], CE-Net [38], DANet [39], CPFNet [40],
GCN [56], R2UNet [57], UNet++ [58], and HRSegNet [59].
To ensure fairness, all the networks were trained with the
same configuration and loss function. The code of the pro-
posed MsTGANet and Semi-MsTGANet will be released in:
https://github.com/wangmeng9218/Semi-MsTGANet.

B. Evaluation Metrics

To comprehensively and fairly evaluate the segmentation
performance of different methods, we adopt four indicators
to quantitatively analyze the experimental results, including
Jaccard index (Jac), Dice similarity coefficient (DSC), preci-
sion (Pre) and Pearson product-moment correlation coefficient
(Ppmcc), among which Jac and DSC are the most commonly
used indices in validating the performance of segmentation
algorithms [32], [36], [37], [39]. The formulas of the four

evaluation metrics are as follows:

Jac = T P

T P + T N + F P
(31)

DSC = 2 ∗ T P

2 ∗ T P + T N + F P
(32)

Pre = T P

T P + F P
(33)

Ppmcc = Cov (X, Y )

σXσY
(34)

where TP, TN, FP and FN are true positive, true negative, false
positive and false negative for pixel classification, respectively.
X and Y represent the segmentation result and corresponding
ground truth. Cov(.) is the covariance between X and Y . σx

and σy denote the standard deviation of X and Y , respectively.

C. Qualitative Analysis

Fig. 6 shows seven segmentation results with speckle
noise interference and some variation in size or shape of
the proposed Semi-MsTGANet, MsTGANet, and compared
with two classical networks that are widely used in medical
image segmentation tasks. As shown in Fig. 6, our proposed
Semi-MsTGANet achieves better segmentation performance,
especially for segmenting the small size drusen (Fig. 6(c)).
Instead, CE-Net performs not well in segmenting small size
drusen because it adopt ResNet-34 as the feature extractor.
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Fig. 6. Seven segmentation results with speckle noise interference and some variation in size or shape of Semi-MsTGANet, MsTGANet, and two
classical networks.

The first layer of feature extractor in CE-Net is a convolu-
tional layer with kernel size 7 × 7 and stride 2, which may
cause the loss of small features for some small-sized lesion
regions (Fig.6 (a) and Fig.6(c)). In U-Net and CE-Net, the
feature maps from skip-connection are directly merged
with the up-sampled feature map by simple concatenation.
It is difficult to avoiding the interference of non-correlated
local information and speckle noise, causing the false posi-
tives (Fig.6(b),(d),(e),(f)). Compared with UNet and CE-Net,
the proposed MsTGANet and Semi-MsTGANet still achieves
better segmentation performance under the influence of

speckle noise interference and some variation in size or shape,
which prove the effectiveness and robustness of our proposed
methods.

D. Quantitative Evaluation

To quantitatively evaluate the retinal drusen segmentation
performance, the mean and standard deviation values of four
metrics including Jac, DSC, Pre, and Ppmcc for different
methods are listed in TABLE II.

It can be seen from TABLE II that our proposed Semi-
MsTGANet achieves better segmentation performance in
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TABLE II
EVALUATION INDICES FOR DIFFERENT METHODS

all indices. As shown in TABLE II, FCN achieves the worst
results since FCN segments the target based on the features
from the top layer of VGG [55], which may cause the loss
of feature information of some small size drusens. Fast-
FCN also achieves the bad results, especially for Jac and
DSC (0.6860 and 0.8125, respectively). Compared with FCN,
Fast-FCN segments the target region based on the features of
top-three layers in the VGG [55] combined with joint pyra-
mid up-sampling module. Although Fast-FCN has achieved
excellent results in many segmentation tasks, it achieves low
segmentation accuracy for segmenting drusen with complex
pathological features because of the loss of small target
features. Compared with Fast-FCN, DANet uses the dilated
ResNet as its feature extractor, and introduces a dual attention
module to learn the non-local features in the channel and
spatial dimensions, which improves the segmentation accu-
racy. However, the loss of small-size features still exists,
which also leads to its low performance for segmenting
drusen. Compared with Fast-FCN and DANet, both PsPNet
and DeepLabV3 improve the segmentation performance by
introducing feature pyramid module to capture the multi-
scale features, which also proves that multi-scale features are
beneficial for improving segmentation performance. Contrary
to FCN series, the U-shape networks series, such as U-Net,
Att-UNet, R2UNet, GCN, CE-Net, CPFNet, and U-Net++
restores the resolution of the high-level features layer by
layer through up-sampling operations in the decoder path, and
add skip-connection at each layer between the encoder and
the corresponding decoder to further alleviate the problem
of details loss for small target. As shown in TABLE II,
most U-shape networks achieves good results, especially

U-Net and Att-UNet. Compared with U-Net, Att-UNet
improves segmentation accuracy by introducing an attention
gate module and embedding it at the end of each skip-
connection to guide the network to focus on salient features.
It can be seen from TABLE II that the proposed MsTGANet
achieves better performance than other CNN-based methods,
the average values of Jac, DSC, Pre, and Ppmcc reaches
0.7412, 0.8502, 0.8548, and 0.8504, respectively. In particular,
compared with Att-UNet, which has the best performance
among all comparison methods, all indices of MsTGANet have
been improved, especially Jac and Pre increased by 0.68% and
2.18%, respectively. In addition, the average Jac, DSC, Pre and
Ppmcc of the proposed MsTGANet are 2.40%, 1.40%, 1.73%
and 1.38% higher than DeepLabV3, which has been widely
used in many target segmentation tasks [37]. The experimental
results prove the effectiveness of the proposed MsTGANet for
drusen segmentation in OCT images.

As shown in TABLE II, the proposed Semi-MsTGANet
achieves best performance in all evaluation metrics, with the
average values of Jac, DSC, Pre and Ppmcc reaching 0.7597,
0.8629, 0.8633 and 0.8626, respectively. Compared with MsT-
GANet, the Jac, DSC, Pre and Ppmcc of Semi-MsTGANet
have been improved significantly by 2.50%, 1.49%, 0.99%
and 1.43%, respectively. And compared with the baseline
network U-Net, the indices of Jac, DSC, Pre and Ppmcc of
Semi-MsTGANet have been improved significantly by 3.71%,
2.18%, 2.63% and 2.09%, respectively. The experimental
results show that the proposed Semi-MsTGANet can further
improve the drusen segmentation performance significantly
by leveraging a large amount of unlabeled data. In addition,
in order to evaluate the performance of different methods more
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TABLE III
STATISTICAL ANALYSIS (p-VALUE) OF THE PROPOSED MSTGANET

COMPARED WITH OTHER CNN-BASED METHODS

comprehensively, the efficiency of different methods also be
listed in TABLE II. It can be seen from TABLE II that our
proposed method takes slightly longer time than UNet due to
the introduction of MsTNL and MsGCS in MsTGANet. How-
ever, it can still meet the requirement of real-time processing.
These experimental results show that compared with other
CNN-based methods, the proposed MsTGANet and Semi-
MsTGANet can achieve better segmentation performance with
similar efficiency.

In addition, the comparison between the proposed
Semi-MsTGANet and two commonly used semi-supervised
segmentation architectures including SemiGAN [60] and
CycleGAN [61] is also listed in TABLE II. It can be seen
from TABLE II that the proposed Semi-MsTGANet achieves
better performance in all evaluation metrics which demon-
strates the effectiveness of the proposed semi-supervised
framework.

E. Statistical Significance Assessment

We further investigate the statistical significance of the
performance improvement for the proposed MsTGANet and
Semi-MsTGANet by the paired T test, and the p-values are
listed in TABLE III and TABLE IV, respectively.

As can be seen from TABLE III that compared with
other excellent CNN-based methods, with the exception
of Jac compared with Att-UNet (p = 0.053 is slightly
higher than 0.05), all the improvements for Jac and DSC of
MsTGANet are statistically significant with p-values less
than 0.05. The results further prove the effectiveness of the
proposed MsTGANet.

TABLE IV lists the p-values of the proposed Semi-
MsTGANet compared with MsTGANet and other CNN-based
methods. All the improvements for Jac and DSC of Semi-
MsTGANet are statistically significant with p-values less
than 0.05. The results further demonstrate that the proposed
semi-supervised framework can leverage unlabeled data to
further improve the drusen performance significantly.

TABLE IV
STATISTICAL ANALYSIS (p-VALUE) OF THE PROPOSED

SEMI-MSTGANET COMPARED WITH MSTGANET

AND OTHER CNN-BASED METHODS

F. Ablation Experiments

As shown in TABLE II, ablation experiments are also
conducted to validate the performance of the proposed MsTNL
module and MsGCS module. In this paper, U-Net is adopted
as our baseline model to evaluate the effectiveness of MsTNL
and MsGCS.

1) Ablation Experiment for MsTNL: As can be seen from
TABLE II, compared with U-Net, the Jac, DSC, Pre,
Ppmcc of UNet+MsTNL have been improved from 0.7325,
0.8445, 0.8412, and 0.8449 to 0.7386, 0.8486, 0.8421, and
0.8490 respectively, which benefits from the fact that the
proposed MsTNL module can adaptively guide model to learn
multi-scale non-local features with long dependency informa-
tion. In addition, we also conducted experiments to compare
the performance of Q and K with C and 1/16C channels,
respectively. The results are listed in TABLE V. It can be seen
from TABLE V that, compared with UNet+MsTNL(C) and
UNet+MsTNL(1/16C), our proposed UNet+MsTNL(1/8C)
achieves better performance in indices of Jac, Dsc, and Ppmcc
with similar efficiency, which prove the reasonability of the
proposed MsTNL module with 1/8C .

2) Ablation Experiment for MsGCS: As shown in
TABLE II, the embedding of MsGCS module into U-Net
(UNet+MsGCS) also obtained better segmentation
performance. Compared with U-Net, UNet+MsGCS achieves
higher indices in the four evaluation indicators. The Jac, DSC,
Pre, and Ppmcc of UNet+MsGCS have been improved from
0.7325, 0.8445, 0.8412, and 0.8449 to 0.7386, 0.8486, 0.8439,
and 0.8489, respectively. The results show that the proposed
MsGCS module is beneficial to improve the performance of
model.

Finally, as shown in TABLE II that compared with
U-Net, the segmentation performance of MsTGANet
(UNet+MsTNL+ MsGCS) has been improved significantly.
The average Jac, DSC, Pre and Ppmcc of MsTGANet
have been improved from 0.7325, 0.8445, 0.8412 and
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TABLE V
EVALUATION INDICES FOR MSTNL MODULE WITH DIFFERENT CHANNELS

0.8449 to 0.7412, 0.8502, 0.8548 and 0.8504, respectively.
The ablation experiment results show that the proposed
MsTGANet (UNet+MsTNL+ MsGCS) can improve the
drusen segmentation accuracy in OCT images significantly.

V. CONCLUSION

In this paper, we propose a novel MsTGANet to improve
the accuracy of drusen segmentation in retinal OCT images.
In MsTGANet, two newly proposed MsTNL module and
MsGCS module are designed, and both modules are combined
with the U-shape architecture to improve the model’s ability
to learn the multi-scale features with long dependency infor-
mation and the capacity of multi-semantic global contextual
feature capture. It is the first time that a multi-scale transformer
method has been developed and applied to the drusen seg-
mentation task to explore multi-scale long-term dependency
information, also the first time to propose a novel adaptively
global attention method that integrate features from channel
and spatial dimensions to improve the model’s capacity to cap-
ture multi-semantic global contextual features. Furthermore,
a novel Semi-MsTGANet based on pseudo-labeled data aug-
mentation strategy also be proposed to alleviate the impact of
insufficient labeled data, which can leverage unlabeled data to
further improve the segmentation performance. We conducted
comprehensive experiments to validate the segmentation per-
formance of the proposed MsTGANet and Semi-MsTGANet.
The experimental results show that compared with other state-
of-the-art CNN-based networks, the segmentation performance
of the proposed MsTGANet and Semi-MsTGANet have been
improved significantly.

In our future works, we will collect more OCT data with
drusen from different OCT scanners and acquisition modes
to build a larger and more comprehensive database to fur-
ther evaluate the performance and robustness of the pro-
posed MsTGANet. In addition, we will also explore different
semi-supervised learning strategies based on MsTGANet to
further improve the performance of drusen segmentation in
OCT images.
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